
ANL�MCS�TM����

Early Experiences with the IBM SP��

Edited by

William Gropp

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Contents

Abstract �

� Introduction �

� Programming Packages and Tools �
��� BlockSolve �
��� Chameleon �
��� MPI �
��� PCN �
��� Portable	 Extensible Tools for Scienti
c Computing �PETSc� � � � � � � � � �
��� Porting the p� Parallel Programming System to the SP
� � � � � � � � � � � �

� Applications �
��� Massively Parallel Mesoscale Model �

����� SP
� Di�culties Encountered �
����� SP
� Bene
ts �

��� Parallel Community Climate Model �
����� SP
� Di�culties Encountered ��
����� SP
� Bene
ts ��

��� Phylogenetic Trees ��
��� Protein Folding by the Study of Hydrophilic and Hydrophobic Loops � � � � ��
��� Superconductivity�Elastic String Model ��
��� Superconductivity�Time
Dependent Ginzburg
Landau Equation � � � � � � ��
��� Parallel Theorem Prover ��

� Summary ��

References ��

iii

Early Experiences with the IBM SP��

Edited by

William Gropp

Abstract

The IBM SP�� is IBM�s newest parallel distributed�memory computer� As part of a
joint project with IBM� Argonne took delivery of an early system in order to evaluate
the software environment and to begin porting programming packages and applications
to this machine� This report discusses the results of those early e�orts� Despite the
newness of the machine and the lack of a fast interprocessore switch �part of the SP��
but not yet available for our machine�� every code that we attempted to port ran on
the SP�� with little or no modi	cation� The report concludes with a discussion of
expectations for the fast interconnect�

Cover Picture
This is a density plot of the atmospheric pressure over the United States	 produced

by the Massively Parallel Mesoscale Model running on the SP
�� This program is a PCN
implementation of the Penn State�NCAR Mesoscale Model version �� The units on the
histogram are millibars ������� The domain is the continental United States	 plus southern
Canada and northern Mexico� The Rockies stand out in dark grey� While it is a little
di�cult to make out the east coast	 the Appalachians do appear in light grey� Thanks to
John Michalakes for this picture�

Contributors

Richard Feldmann Lori Freitag
William Gropp David Levine
Gary Leaf Ewing Lusk
William McCune John Michalakes
Ross Overbeek Paul Plassmann
Steven Tuecke

�

� Introduction

The IBM SP
� is a new parallel computer designed to make the best use of IBM�s powerful
RISC technology combined with a high
speed switch�

Special features of this machine are

� large memory per node ���� MBytes�	

� local disks on each node �� GByte�	

� full Unix on each node �IBM AIX�	

� high
performance nodes	

� high I�O bandwidth o� nodes	 and

� relatively mature software environment�

This report describes the applications and programming packages that researchers at
Argonne National Laboratory ported to the SP
� in the
rst few weeks after it was delivered�
Since this early system did not include the fast interprocessor switch �to be delivered by
the end of May�	 these results	 particularly the performance results	 should not be taken
as representative of performance of the SP
�� Instead	 these results indicate the state of
software environments for the SP
� and the power of the software packages that have been
developed for portable parallel programming�

The software packages and tools are as follows�

BlockSolve Parallel sparse	 symmetric linear systems

Chameleon Lightweight and portable message
passing system

MPI Message
passing interface draft standard

PCN Program Composition Notation �a coordination language�

PETSc Portable	 extensible tools for scienti
c computing

P� Portable message
passing and shared
memory library

The applications �all parallel� are as follows�

Community climate model Global climate model

Mesoscale weather model Continent
sized weather model

�

Phylogenetic tree Program to construct phylogenetic trees from sequence data

Protein folding Program to grow a protein and fold it

Superconductivity Modeling of �ux vortices in high
temperature superconductors �two
applications�

Theorem prover Distributed associative
commutative theorem prover

Because the ANL SP
� does not yet have the fast interconnect	 these application ports
are primarily a test of the software environment� However	 since all of these applications
are built using one or more of the portable parallel programming packages	 successful ports
of those packages immediately give ports of these applications� In addition	 these ports will
allow us to address the question of how necessary a fast interconnect is �some workers have
suggested that farms of machines are adequate�	 by comparing the results with applications
before and after the fast switch is installed�

One common problem that many groups experienced had to do with linking Fortran
programs on the SP
�� Because the Fortran run
time libraries were not available on each
SP
� node	 each group had to link with the options �bnso �bI��lib�syscalls�exp� Fur

ther	 since these are not documented on the xlf man page	 there was some delay in porting
some applications� Another problem with Fortran was caused by the fact that	 by default	
the external names produced by Fortran are not distinguishable from those produced by
C� using the command line switch to xlf to add the trailing underscore common on many
Unix systems is not always a workable solution	 particularly for library developers�

Each of these subsections was contributed by the author named in the section� minor
editing has been done	 and any errors are the responsibility of the editor�

� Programming Packages and Tools

This section describes the programming packages that support the applications that have
been ported to the SP
�� The packages include a numerical library �BlockSolve� and three
programming packages �Chameleon	 PCN	 and p��� In addition	 a port of part of the draft
message
passing standard �MPI� has been made to the SP
��

��� BlockSolve

Contributed by Paul Plassmann and Lori Freitag
BlockSolve ��� is a software library for solving large	 sparse systems of linear equations on
massively parallel computers� The matrices must be symmetric but may have an arbitrary

�

Table �� Results for BlockSolve on the SP
� with �
D partitioning �times are CPU times
and do not include communication times�

�
D PARTITIONING

Num� Procs� Local Grid Sz� Total Grid Sz� Time Init� Time Fact� Time�Iter�

� ��� ��� ���� ���� �����
� ��� ���� ���� ���� �����
� ��� ���� ���� ���� �����
� ��� ���� ���� ���� �����
�� ��� ���� ���� ���� �����

Table �� Results for BlockSolve on the SP
� with �
D partitioning �times are CPU times
and do not include communication times�

�
D PARTITIONING

Num� Procs� Local Grid Sz� Total Grid Sz� Time Init� Time Fact� Time�Iter�

� ��� ��� ���� ���� �����
� ��� ���� ���� ���� �����
� ��� ���� ���� ���� �����
� ��� ���� ���� ���� �����
�� ��� ���� ���� ���� �����

sparsity structure� BlockSolve is a portable package that is compatible with several di�erent
message
passing paradigms�

For the results presented here we are using the p� communication package �through
Chameleon� on the IBM SP
�� The local problem is based on the �
D seven
point stencil on
an �� �� � grid and remains
xed as the number of processors increases� For the
rst set
of test problems	 the local grids are connected end to end in one dimension� For the second
set	 the local grids are connected in all three directions for eight and sixteen processors�
We expect that for larger local problems the time per iteration will be roughly constant�
The results for measuring the CPU time only are shown in Tables � and �� Results for the
elapsed time �including communication times and potential interference from other running
jobs� are shown in Tables � and ��

�

Table �� Results for BlockSolve on the SP
� with �
D partitioning �times are elapsed time	
averaged over � runs�

�
D PARTITIONING

Num� Procs� Local Grid Sz� Total Grid Sz� Time Init� Time Fact� Time�Iter�
� ��� ��� ����� ���� �����
� ��� ���� ����� ���� �����
� ��� ���� ����� ����� �����
� ��� ���� ����� ����� �����
�� ��� ���� ������ ����� �����

Table �� Results for BlockSolve on the SP
� with �
D partitioning �times are elapsed time	
averaged over � runs�

�
D PARTITIONING

Num� Procs� Local Grid Sz� Total Grid Sz� Time Init� Time Fact� Time�Iter�
� ��� ��� ����� ���� �����
� ��� ���� ����� ���� �����
� ��� ���� ����� ����� �����
� ��� ���� ����� ����� �����
�� ��� ���� ������ ����� �����

��� Chameleon

Contributed by William Gropp

Message passing is a common method for writing programs for distributed
memory parallel
computers� Unfortunately	 the lack of a standard for message passing has hampered the
construction of portable and e�cient parallel programs� In an attempt to remedy this
problem	 a number of groups have developed their own message
passing systems	 each with
its own strengths and weaknesses� Chameleon is a second
generation system of this type�
Rather than replacing these existing systems	 Chameleon is meant to supplement them by
providing a uniform way to access many of these systems� Chameleon�s goals are to �a� be
very lightweight �low overhead�	 �b� be highly portable	 and �c� help standardize program
startup and the use of emerging message
passing operations such as collective operations
on subsets of processors� Chameleon also provides a way to port programs written using
PICL or Intel NX message passing to other systems	 including collections of workstations�

�

Figure �� Communication performance for the ethernet links in the SP
�

This feature was used by the global climate model �Section ���� to port to the SP
��
Chameleon ported to the SP
� with no problems other than the need to statically link

Fortran programs� Chameleon includes a set of programs that test the communications
performance of the system� Bearing in mind that the tested system does not have the
switch �all communications are over ethernet�	 the performance is quite reasonable �better
than our Sun network�	 as is shown in Figure ��

��� MPI

Contributed by William Gropp and Ewing Lusk
MPI is a message
passing standard that is currently being developed by a broad group
of massively parallel processor �MPP� vendors and users� A partial implementation of the
point
to
point routines of the current �May ����� MPI draft standard has been implemented
and run on the SP
�� This implementation is designed to give a vendor maximum �exibility
in matching the MPI operations to vendor
speci
c hardware and�or software� This instance
of the implementation builds on Chameleon	 using the p� transport layer� We expect it to
be easy to port MPI directly on top of EUI
� or lower level communication primitives�

�

��� PCN

Contributed by Steven Tuecke
The RS����� network version of PCN �net
PCN� ��	 �� worked on the SP
� with no modi

cations� This version of PCN uses TCP�IP �i�e�	 sockets� for communication between nodes
and uses rsh for node startup�

Initially	 PCN programs were compiled on an RS����� ��� and the executables copied
to the �u
lesystem which is mounted on all of the SP
� nodes� These programs worked
perfectly� Then	 to test the stability of the C compiler and environment on the SP
� nodes	
we rebuilt the PCN compiler from scratch on an SP
� node in �u with no di�culties�

To work around the problem of needing to statically link the Fortran libraries	 the PCN
compiler driver on spgw �the SP
� gateway machine� was modi
ed to pass extra arguments
to the linker when linking with Fortran subroutines	 so as to force static linking of the
Fortran libraries�

��� Portable� Extensible Tools for Scienti	c Computing
PETSc�

Contributed by William Gropp
PETSc is a package of routines aimed primarily at the solution of partial di�erential equa

tions� PETSc is designed to match advanced algorithms to new and existing applications
by taking an object
oriented approach to the design of the routines� For example	 the iter

ative accelerators that are part of PETSc have been designed to allow the user to specify
all of the vector operations as well as matrix
vector product and preconditioning� Thus	
these iterative methods can be used with nontraditional vectors	 such as oct
trees or vectors
distributed across a distributed
memory parallel computer� PETSc also includes a number
of packages that aid in writing parallel programs� One of these is BlockComm	 a pack

age for communicating blocks of data between processors� Another is a parallel general
�nonsymmetric� linear system solver using iterative methods�

All of the parallel communication in PETSc is done with Chameleon� Porting PETSc	
with the exception of the Fortran library problem	 required no special e�ort� A version of
PETSc that can take advantage of IBM�s ESSL �when available� is being developed� the
object
oriented nature of PETSc means that users can take advantage of these changes by
relinking rather than rewriting their code�

��� Porting the p� Parallel Programming System to the SP��

Contributed by Ewing Lusk
The p� parallel programming system ��	 �� currently runs on nearly all existing parallel
computers and workstations� It has been used routinely on networks of RS������s� It was
hoped that the RS����� version of p� could be built unchanged on the SP
�� This would

�

have been true except for the shared library problem for Fortran programs� For this reason
the Fortran part of p� has not yet been ported	 although this should happen soon� At the
moment	 two di�erent installations of p� are maintained	 one for the RS������s and one for
the SP
��

The C part of p� compiled and linked the
rst time on the SP
�	 using all parameters
from the RS����� version� C programs compiled and linked for the RS����� network have
run unchanged on the SP
�� The phylogenetic tree application �Section ���� is in this
category�

� Applications

Successful port of a programming package to a parallel machine was once considered a
su�cient test of the machine� However	 as parallel machines are increasingly being acquired
for production computing	 it is more important to test them with ports of actual �as opposed
to model� applications�

��� Massively Parallel Mesoscale Model

Contributed by John Michalakes
MPMM is a
ne
grained dynamic decomposition of the Penn State�NCARMesoscale Model
version �� Each set of four horizontal grid points is represented as a parallel process running
under PCN �Section ����	 providing a transparent mechanism for redistributing load between
physical processors� The work is being done in collaboration with the developers of the
original Cray model �who are at NCAR�� This program is used for real
time forecasting and
climate prediction�

����� SP�� Di�culties Encountered

MPMM is a hybrid code	 composed of top
level PCN code to manage parallelism between
core modules of native Fortran� The PCN part of the port was simply a matter of recom

piling� A day or two earlier Steven Tuecke had ported PCN to the SP
�� The port of the
Fortran code was more di�cult	 though still manageable�

There are a number of troublesome inconsistencies between IBM�s implementation of
Fortran and other Unix implementations�

The major problem we encountered was xlf�s lack of an
extend option to relax the
column �� restriction on source lines� We have a number of automatic source code transfor

mations built into the Fortran parts of MPMM to facilitate the
ne
grained decomposition
of the code� These source transformations can generate longer lines	 and they do not re

spect the column �� restriction� Xlf does have a free
format option	 but this required some

�

very radical syntactic changes to the code� Our solution was to write an additional source
transformation that	 as a last step before entering the compiler	 breaks the long lines into
continuations	 respecting column ���

����� SP�� Bene	ts

The SP
� has two principal bene
ts� an excellent programming environment and a large
RAM and virtual memory�

Notwithstanding the relatively minor di�culties we encountered with xlf incompatibil

ities	 the RS����� programming environment is vastly superior to the environment we have
experienced with the Intel machines� There are no cross compilers� a program compiled
on any RS����� runs on the SP
�� Xlf has a rich set of options to assist in debugging	
such as array bounds
checking and �oating
point traps� A debugger exists	 which gives it
an immediate advantage over the Intel environment� the fact that it also works well is a
welcome bonus�

Each node of the SP
� has a prodigious amount of physical memory� ��� Mbytes	
augmented by an additional amount of virtual memory� This feature makes it possible to
run large problems on small numbers of nodes or even a single node if performance is not
the main consideration� In particular	 this is very useful for debugging� The large amounts
of memory also allow programs to set up large bu�ers that can be used for asynchronous
I�O�

��� Parallel Community Climate Model

Contributed by John Michalakes
PCCM� is a message
passing implementation of the NCAR Community Climate Model �
�CCM��� The model is patch decomposed in two horizontal dimensions� Spectral transport
of prognostic variables is accomplished by parallel FFTs in the zonal dimension and Gaus

sian quadrature in the meridional dimension	 approximating Legendre transforms� The
spectral transport mechanism of CCM� is communication intensive because interchange of
data is not con
ned to nearest neighbor�

The work is being performed under the directed portion of the Department of Energy
CHAMMP initiative and is the collaborative e�ort of Argonne	 Oak Ridge National Labo

ratory	 and NCAR� The model is used for climate prediction�

PCCM� is implemented using a message
passing library	 PICL� Prior to the IBM SP
�	
PCCM� has run on the Intel Touchstone Delta and Paragon computers�

�

����� SP�� Di�culties Encountered

We encountered two di�culties� lack of a message
passing library and shortcomings with
the the IBM Engineering and Scienti
c Subroutine Library �ESSL��

Since the machine is new	 there is no implementation of PICL for the SP
�� Bill Gropp
kindly generated a PICL�Fortran compatibility library for his Chameleon package �Section
����	 and we have run PCCM� on the SP
� using that library�

ESSL is available on the SP
�	 and we have begun converting the FFTs in CCM to use
the library routines in the hope that processor performance will be further improved� In
general	 the availability of this library is a plus	 though there have been some di�culties�
One feature of the ESSL FFT routine that could be a problem is the requirement that it
be reinitialized for even minor changes in the data being transformed� CCM calls forward
and inverse FFTs a number of times each time step	 with di�erent numbers of vectors to
be transformed at each call� There is no other change than the number of vectors	 yet a
separate initialization is required� This may produce a hit against the potential performance
gain from using the library� The other shortcoming of the library is that there are no parallel
distributed memory implementations of the FFT or other routines� Therefore	 the ESSL
FFT can be used on PCCM� only if the zonal dimension of the model is undecomposed�

����� SP�� Bene	ts

The biggest advantage of the SP
� for the climate model is processor performance� Running
on a single node of the SP
�	 PCCM� achieved a sustained performance of �� M�ops at
T�� resolution	 as compared with �
� M�ops per node on i��� nodes of the Delta�

��� Phylogenetic Trees

Contributed by Ross Overbeek
Gary Olsen and Carl Woese of the Ribosomal Database Project at the University of Illi

nois at Urbana have been creating an alignment of the rRNA from the small subunit of
the ribosome� This alignment has become one of the fundamental tools for phylogenetic
research�

Gary Olsen	 along with a group at ANL and Hideo Matsuda of Kobe University	 de

cided to create a fast implementation of a maximum likelihood algorithm for constructing
phylogenetic trees from an alignment of sequence data� This program	 called fastDNAml	
now runs on a wide class of uniprocessors	 on networks of workstations	 and on several of
the massively parallel systems �most notably	 the Delta��

Gary	 Rusty Lusk	 and I decided to put the program on the SP
� and to attempt to use
it to investigate a speci
c scienti
c issue� Where do the mitochondria
t within the alpha
purple bacteria� This is a serious issue� the approximate answer produced by a fast insertion

��

algorithm that we developed for use on workstations con�icted with the opinion of Woese
�who is generally acknowledged as a world authority on phylogeny of microorganisms��

The basic goal of our program is to construct a tree with a maximum likelihood of
generating the observable data� The set of trees to be searched is huge� Hence	 one uses
heuristic optimization algorithms to search for a �best� tree� Our version is sensitive to
the order in which individual sequences are placed into the tree� We compensate for this
by using many random orders	 hoping that the true global optimum will be revealed from
multiple attempts� Thus	 the degree of con
dence that one can feel about the computed
tree is directly related to the number of attempts made to locate an optimum value�

An overnight run involved to construct a tree from �� aligned rRNA sequences produced
�� di�erent outputs based on random orderings of the sequences� The best value occurred
� distinct times	 and the placement of the mitochondrial sequence within the alpha purple
was substantially di�erent from the approximate position computed earlier�

My early reactions to the machine are as follows�

�� It is fast� Using �� nodes	 each run took roughly seventeen minutes each� these would
take substantially longer �on the order of days� on single Suns�

�� The software environment is relatively good �in
nitely better than the Delta�� Unix
works� Unlike the Delta	 basic tools such as �head� work	 Emacs is available	 and
long lines do not produce erratic behavior�

I look forward to making a large e�ort to resolve a number of critical phylogenetic
questions during the next ��� months using the machine under the guidance of Olsen and
Woese�

��� Protein Folding by the Study of Hydrophilic and Hydrophobic Loops

Contributed by Richard Feldmann
NIH�� and Ewing Lusk

The program Lfold grows a protein in steps of one amino acid at a time� There are ����
cycles between each amino acid addition� The protein TIM �Triose Phosphate Isomerase	
the most prevalent protein architecture� is ��� amino acids long	 so synthesis is complete
at about ���	��� cycles� We believe that if the program can fold TIM	 it will be capable
of folding any protein� A cycle is one random examination of each hydrophobic loop in the
protein to see whether this hydrophobic loop can move� The moves are a sort of Feynman
exchange� that is	 the existence of a hydrophobic loop at the head of a pair of hydrophilic
loops catalyzes the exchange of the hydrophilic loop pair�

Folding then is the interaction of the backbone hydrophilic water loops �which are com

mon to every amino acid except PRO� with the hydrophilic water loops of certain amino
acids �i�e�	 about �� of the �� amino acids� with the hydrophobic capacity of each amino

��

acid� Essentially there are two grammars	 the hydrophilic grammar and the hydrophobic
grammar� The folding is driven by the interaction of these grammars through the topolog

ical exchanges and the event
driven extraction of water�

The parallelism is easy to explain� There are three types of blind parallelism that we
examine� di�erent random seeds	 di�erent parameters	 and di�erent proteins� Right now
we are focusing just on TIM	 but in earlier experiments we looked at proteins in the other
structural classes to assure ourselves that the program would work for all proteins� We vary
the parameters from run to run� We change the program whenever a new rule or a variation
on an existing rule is indicated by the results from the computational experiments or just
intuition�

��� Superconductivity
Elastic String Model

Contributed by David Levine and Gary Leaf
We have developed a code for the numerical simulation of the planar motion of a one

dimensional elastic
lament �single vortex� under tension	 to investigate the properties of
the vortex
glass state in superconductors� The computational problem requires the time
integration of a stochastic evolution equation� ensemble averages are obtained by considering
the long
time behavior of the solution for a large number of realizations� The objective of
the numerical simulations is to measure the resulting �average� velocity of the
lament as
a function of the applied force�

The parallel approach used with this code is based on the task farming model� Since
each realization is both time consuming and independent of the other realizations	 we run a
number of sequential jobs in parallel� Our �production� machines have primarily been the
BBN TC���� and a Sun Sparc network� Porting this code to the SP
� was fairly easy� We
compiled	 linked	 and tested the code on an RS����� workstation and ran the same binary
without change on the SP
�� It is worth noting that no problems were encountered using
the Unix system calls gettimeofday�� and times���

��� Superconductivity
Time�Dependent Ginzburg�Landau Equation

Contributed by David Levine and Gary Leaf
We have developed a parallel	 three
dimensional code to study the formation of vortices
in the mixed state of type
II superconductors� The code is based on the time
dependent
Ginzburg
Landau �TDGL� equation	 which provides a phenomenological description of the
macroscopic properties of high
temperature superconductors� E�ects of external currents	
material defects	 and thermal �uctuations can be incorporated into this equation� We are
particularly interested in the formation and subsequent evolution of �ux vortices and the
in�uence of random impurities on vortex pinning�

��

Table �� Results for TDGL on IBM SP
�

Time �sec�� Time �sec��
No� Processors ��� ��� ���� ���� ���� ����

� ��� ����
� �� ���
� �� ���
� ��� ���
�� �� ���

We use the single
program multiple
data �SPMD� distributed
memory programming
model� The arrays associated with the superconductor are decomposed among the memories
of the individual processors� The communication of data between processors is handled
using the BlockComm software of Bill Gropp �Section ����� Before using the SP
� we had
run this program on several parallel machines	 including Sun Sparc and IBM RS�����
workstation networks and the Intel Gamma and Delta machines�

Porting this code to the SP
� was fairly easy� We compiled and linked the code with
the BlockComm and p� libraries on an RS����� workstation� �We also ran it on several
RS����� workstations�� We then moved the executable and data
les to the SP
�� We were
able to run the code	 on two di�erent problems	 without any changes on ���� processors�
Solution times for ��� iterations are given in Table ��

��� Parallel Theorem Prover

Contributed by William McCune and Ewing Lusk
We were able to port our parallel distributed
memory theorem prover dac �distributed
associative
commutative theorem prover� to the SP
� with no problems� dac was developed
on the Symmetry and a Sun network using p�� Single
node performance was excellent	
despite the lack of �oating
point operations in dac� To test speedup	 we need to do a more
carefully controlled set of experiments	 in which other users are not on the nodes we are
using� The benchmark problem we are using is to prove that a ring where x

� � x for all x
is commutative�

� Summary

Having a full	 running Unix OS on each node allows for easy ports� We have also taken
advantage of the ability to reboot individual nodes without disturbing the others� Fur

��

thermore	 the use of portability layers �Chameleon	 PCN	 and p�� let us port applications
quickly and allowed us to become familar with the programming environment on the SP
�
in the context of signi
cant applications�

We note that Fortran programs must be linked with �bnso �bI��lib�syscalls�exp�
This is a serious drawback� it is the one factor that kept people from feeling entirely good
about the IBM SP
�� There are a number of places where xlf behaves di�erently from
many other Unix Fortrans� these also caused problems� They include failure to provide the C
preprocessor to Fortran programs �typically applied automatically to
les with extension �F�
and the choice of the compiler to produce symbols from Fortran that are indistinguishable
from symbols generated by C �the lack of a trailing underscore�� �We note	 however	 that we
do not have a full software environment up yet� tools such as loadleveler and the parallel
operating environment could be very helpful� Better documentation would also help� the
loadleveler �User�s Guide� neglects to mention how to start the loadleveler GUI and
does not mention the command line routines until Chapter ��

With the delivery of the fast interconnect	 we believe that we can immediately begin
to use the SP
� for large applications as well as continued development of portable parallel
programming tools� Since all of the applications are built on top of these tools	 they should
all run with the fast interconnect without any changes other than relinking� Based on
early documentation about the EUI
� programming interface	 Chameleon already has an
�untested� implementation for the fast interconnect�

References

�� James Boyle	 Ralph Butler	 Terrence Disz	 Barnett Glickfeld	 Ewing Lusk	 Ross Over

beek	 James Patterson	 and Rick Stevens� Portable Programs for Parallel Processors�
Holt	 Rinehart	 and Winston	 �����

�� Ralph Butler and Ewing Lusk� Monitors	 messages	 and clusters� The p� parallel
programming system� Preprint MCS
P���
����	 Mathematics and Computer Science
Division	 Argonne National Laboratory	 �����

�� Ian Foster	 Robert Olson	 and Steven Tuecke� Productive parallel programming� The
PCN approach� Scienti�c Programming	 ����������	 Fall �����

�� Ian Foster and Steven Tuecke� Parallel programming with PCN� Technical Report
ANL
�����	 Rev� �	 Argonne National Laboratory	 �����

�� Mark T� Jones and Paul E� Plassmann� An e�cient parallel iterative solver for large
sparse linear systems� In Proceedings of the IMA Workshop on Sparse Matrix Com�

putations� Graph Theory Issues � Algorithms	 Minneapolis	 ����� Univeristy of Min

nesota

��

